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Abstract - An lH n.m.r. study of (+)-muscarine } in deuterium oxide
solution shows that the t conformation 4 is highly favoured for the

exocyclic C(5)-C(6) bond.

Ring proton coupling constants can be

accounted for on the basis of rapidly interconverting puckered forms
largely favouring the C(4)-endo conformation.

Muscarine } has played a central role in neuro-
pharmacology because of its straong and specific
This has generated
a considerable interest in its ccnformatim.z
The crystal structure of (+)-muscarine iodide
bears a close resemblance to that of lactoyl-
choline chloride* and to the preferred con-

formation of acetylcholine in solutim,sl‘here

is no information on the solution conformation

cholincmimetic activity. 1

3

of muscarine except for an lH n.m.r. n.0.e.
investigation of the conformation about the
c(5)-C(6) bt:nd.6 We have now carried out
such a study using lH n.m.r. data on D20
solutions of pure (+)-muscarine chloride,7
essentially by utilising the close structure
similarity with 2'-deoxynuclecsides 2. There
is much work, both in the N- and C-nucleoside

series on which to draw.o 13

+ 6 }
Me,NCH, Me
5 2
h 3
OH
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The chemical shift data were cbtained using
a Varian XL10O spectrameter at 100 MHz and are

collected in Table 1. Line assignments were
made by decoupling studies and the coupling
constants are given in Table 2.

Table 1 Proton Chemical Shifts (§) (pgn)a for
(+) -muscarine chloride

H-2 H-3 H-4' H-4 H-5 H-6' H-6 Me ﬁMe3
3.90° 3.93 1.84 1.96 4.49 3.30 3.46 1.07 3.04

@ measured at 20° in 020 solution with

acet onitrile as interfial standard; in the case
of geminal protons, that resonating at higher
field is designated with a prime.

b Appraximate value.

Table 2 Coupling Constants (Hz) for (+)-
muscarine chloride
71,2 2,3 73,4* 93,4 4,4 Y40,594,5
6.8 3.0 5.2 2.4 14.0 9.2 7.0
7s5,6' 75,6 76',6
8.3 3.0 13.5
We consider first the rotamer preference
about the C(5)-C(6) bond in 1. Established

procedures are available for analysing the
conformational preferences about the C(4')-C
(5') bond in nuclecsides and nucleotides,

. " 12,13
using J4.,5. and J4.,5 values.

this work we utilise correspanding equations

Following
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1 - 3 to analyse the muscarine system in terms
of the populations (p) of th+e three staggered
conformers 3, 4 and 5 (X = NMe3).

1 _ 1 1 1
J5,6 = pJ, + paJa + pJ- (1)
2 _ 2 2 2
JS,G = pd, + paJa + pJ (2)
1 = P, + pa + p_ (3)
re=-n r===1 r====
Il ‘\ ;I 2 ‘\ " H] I‘
4 1) * . 1Y
o %X ¢c o e o Mt
2 H H X
Hé H, X . He
5 5 H5
gt t 9-
3. 4. 5.

The evaluation of p Py and p_ depends on the
specific assignment of the observed coupling
constants to particular methylene protans.

Following the corresponding assignments for
nucleosides and nucleotidess’lz, I and

’
J5 g e assigned respectively to J d
’

5,6 2
2 ; !
J5,6' For muscarine J+ and Ja values were

obtained fram the model campounds 6 and 714713

assuming a negligible electranegativity
difference between N' and N /1, 4.8; 2, 1.3;
1 2

Ja' 2.1; Ja' 11.2). The J-values were

evaluated as for nucleosides12

by using
H Me H Me
. 0 0
Me,N Me uN H
H H H Me
6. 7.
16

the expressions of Abraham and Gatti, for
disubstituted ethanes, assuming a negligible
electronegativity difference between C and H

@t 12.4; 42, 5.4).

The conformation populations obtained by
this analysis are given in Table 3. There is
evidently a strong preference for muscarine to
exist in the t conformation (4), confirming

Table 3 Canformer populations about the C(5)-
C(6) bond in muscarine

Py P, P_

0.04 0.88 0.08

the earlier conclusion fram n.O.e. studies by

de Fontaine et al.® This is in line, too,

with the crystal structure, also in the
synclinal conformation, where the OCCN torsion
angle is 730.3 Nottali, Lambert and Letsinger
have shown that a 5'-amino-5'-deoxynucleoside
has the same conformation (4; X = NHz) about
the C(41)~C(5") bond.l” This is in marked
contrast to the nucleosides and 5'-nucleotides
which virtually exclusively have the g+ can-
formation as in (3: X = OH or OPO3H2).

It is noteworthy that in the n.m.r. spec-
trum of muscarine the H-5 rescnance is shifted
markedly downfield campared with the H-4'
resonance in nucleosides. The deshielding is

presumably due to the magnetic anisotropic
15

effect induced by the positive charge,”~ or to
steric campression by the large trimethyl-
amonio group in this conforrnatjx::n.18 The H~5

rescnance alone is broadened due to a

relatively large NCCH couplj.ng.15

In the crystal, the S-membered ring of
muscarine exists in a C(4)—jgﬂ_£,4E, confor-
mation, but no information is available on the
solution conformation. Generally speaking
tetrahydrofuran rings exist in dynamic
equilibrium between two favoured puckered
conformations and Altona and Sundralingam
introduced a pseudorotational analysis whereby
the 5-membered ring conformation could be
calculated fram cbserved vicinal coupling
constants. The observed ribo-nucleoside and
-nuclectide spectra were interpreted in terms
of two ring conformers (C(2')-endo and C(3')-
endo). With an electronegativity correction
(1.1 Hz) to campensate for the replacement of
CH by H at C(2') the method was extended to the
2'~deoxyribosyl derivatives. Davies and
Danyluk'! derived the relation 4 by a related
scheme in which XS and XN are the mole
fractions of the C(2')-endo and C(3')-endo con-
formers respectively and showed that the
equilibrium values for a series of deoxy-
nucleosides 2 agreed well with those derived by
a complete pseudorotaticonal analysis. Before
analysing the coupling constants of the ring
protons

Keq = %™ = J1v,20/30 40 (4)
of muscarine it is necessary to assign the 4-
and 4'-signals. Following the arqument of
Davies and Dany].u.kll based on coupling constant
magnitudes, the high field signal H-4' was
assigned to B, (8).
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